Problem 5.3

a.) To use Newton's Second Law (F=ma), we need to determine the acceleration. Using kinematics to do so yields:

$$a_{x} = \frac{\Delta v_{x}}{\Delta t}$$

$$= \frac{\left(v_{f} - v_{o}\right)_{x}}{\Delta t}$$

$$= \frac{\left((8.00 \text{ m/s}) - (3.00 \text{ m/s})\right)}{(8.00 \text{ s})}$$

$$= .625 \text{ m/s}^{2}$$

$$a_{y} = \frac{\Delta v_{y}}{\Delta t}$$

$$= \frac{\left(v_{f} - v_{o}\right)_{y}}{\Delta t}$$

$$= \frac{\left((10.0 \text{ m/s}) - (0 \text{ m/s})\right)}{(8.00 \text{ s})}$$

$$= 1.25 \text{ m/s}^{2}$$

1.)

With the acceleration components, we can write the force components as:

$$F_x = ma_x$$

= $(4.00 \text{ kg})(.625 \text{ m/s}^2)$ and $F_y = ma_y$
= $(4.00 \text{ kg})(1.25 \text{ m/s}^2)$
= 2.50 N = 5.00 N

So the net force will be:

$$\vec{F} = F_x \hat{i} + F_y \hat{j}$$

= (2.50 N) \hat{i} + (5.00 N) \hat{j}

b.) As for the magnitude of the force:

$$|\vec{F}| = \sqrt{(F_x)^2 + (F_y)^2}$$

= $\sqrt{(2.50 \text{ N})^2 + (5.00 \text{ N})^2}$
= 5.59 N

2.)